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Abstract

We characterize real Lie algebras carrying a hypersymplectic structure as bicrossproducts of two
symplectic Lie algebras endowed with a compatible flat torsion-free connection. In particular, we obtain
the classification of all hypersymplectic structures on 4-dimensional Lie algebras, and we describe the
associated metrics on the corresponding Lie groups.
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1. Introduction

A hypersymplectic structure on a manifold is a complex product structure, i.e. a pair {J, E}

of a complex structure and a product structure that anticommute, together with a compatible
metric such that the associated 2-forms are closed. This notion is similar to that of a hyperkähler
structure, where the base manifold carries a hypercomplex structure, i.e. a pair {J1, J2} of
anticommuting complex structures.

Hypersymplectic structures were introduced by Hitchin in [11], and they are also referred to as
neutral hyperkähler structures in [12] and as parahyperkähler structures in [1]. Hypersymplectic
structures on manifolds have become an important subject of study lately, due mainly to its
applications in theoretical physics (especially in dimension 4). See for instance [5], where there
is a discussion on the relationship between hypersymplectic metrics and the N = 2 superstring.
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Hypersymplectic metrics on a manifold are Ricci-flat and the associated holonomy group is
contained in the real symplectic group.

In [12], the compact complex surfaces which admit hypersymplectic structures are
determined. These complex surfaces are either complex tori or primary Kodaira surfaces; it is also
shown when the hypersymplectic metrics on these surfaces are flat. In [8], examples of (non-flat)
hypersymplectic structures are given on Kodaira manifolds, which are special compact quotients
of 2-step nilpotent Lie groups. These hypersymplectic structures are not invariant by the nilpotent
Lie group. In [3], examples of hypersymplectic nilmanifolds are exhibited, where in this case the
hypersymplectic structures are invariant by the action of the nilpotent Lie group and, moreover,
the complex structure is abelian. The corresponding hypersymplectic metrics are not necessarily
flat. In [1], a classification is given of the symmetric spaces admitting a hypersymplectic structure
and it is shown that these spaces are Osserman.

The main goal of this paper is to give the classification, up to equivalence, of all left
invariant hypersymplectic structures on 4-dimensional Lie groups. These Lie groups will provide
examples of hypersymplectic structures in non-compact manifolds, since their underlying
differentiable manifolds are diffeomorphic to R4. In order to perform this classification, we
begin in Section 3 the study of hypersymplectic structures on real Lie algebras. We obtain that,
associated to a hypersymplectic structure {J, E, g} on a Lie algebra g, there are two triples
(g+,∇

+, ω+), (g−,∇
−, ω−), where g± are Lie subalgebras of g such that g = g+ ⊕ g− and

g− = Jg+, ∇
± is a flat torsion-free connection on g± and ω± is a symplectic form on g± such

that ω+(x, y) = ω−(J x, J y) for all x, y ∈ g+ and ∇
±ω± = 0. Conversely, we show that, in

certain cases, given two triples (g+,∇
+, ω+) and (g−,∇

−, ω−) satisfying the same conditions
as above, we can obtain a hypersymplectic structure on g+ ⊕ g− (direct sum of vector spaces).
This result will be used in the 4-dimensional case. We also deal with equivalences between
hypersymplectic structures.

Next, in Section 4, we give the first steps in order to achieve the classification mentioned
above, namely, we determine the flat torsion-free connections on the 2-dimensional Lie algebras
which are compatible with a symplectic form and obtain their equivalence classes.

In Section 5, we show that a complex product structure on a Lie algebra admits at most
one compatible metric (up to a multiplicative constant) and we state our main result which
says that, aside from the abelian Lie algebra, there are only three Lie algebras which admit a
hypersymplectic structure. One of them is a central extension of the 3-dimensional Heisenberg
algebra h3; the second one is an extension of R3 and the third one is an extension of h3. We also
parameterize the underlying complex product structures with the corresponding hypersymplectic
metrics, pointing out when these metrics are flat and/or complete. The proof of this theorem is the
content of Section 6. As an illustration we exhibit the following (non-isometric) hypersymplectic
metrics on R4 with canonical global coordinates t, x, y, z:

(i) g = dt2
+ dx2

− dy2
− dz2 (flat and complete).

(ii) g = e−t dt (dz −
1
2 xdy +

1
2 ydx)+ e−t dxdy (flat but not complete).

(iii) g = et dtdz + e2t dz2
− dxdy + e2t dy2 (neither flat nor complete).

2. Preliminaries

We start recalling some definitions which will be used throughout this work. All Lie algebras
will be finite dimensional and defined over R.

Let G be a Lie group with Lie algebra g and suppose that G admits a left invariant (affine)
connection ∇, i.e., each left translation Lg : G → G, x 7→ gx is an affine transformation of G.
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In this case, if X, Y ∈ g are two left invariant vector fields on G then ∇X Y ∈ g is also
left invariant. Moreover, there is a one–one correspondence between the set of left invariant
connections on G and the set of bilinear functions g × g → g (see [10, p. 102]). Accordingly, in
this work we will consider the following notion of connection on a Lie algebra:

Definition 1. A connection on a Lie algebra g is a bilinear form ∇ : g × g → g. The connection
is called torsion-free if ∇x y − ∇y x = [x, y] for all x, y ∈ g and is called flat if the curvature R
of ∇ is identically zero, where R(x, y) = ∇x∇y − ∇y∇x − ∇[x,y], x, y ∈ g.

We recall that flat torsion-free connections on a Lie algebra are also known as “left-symmetric
algebra” (LSA) structures. It is known that the completeness of the left invariant connection ∇

on G can be studied by considering simply the corresponding connection on the Lie algebra g.
Indeed, the left invariant connection ∇ on G will be (geodesically) complete if and only if the
differential equation on g

ẋ(t) = −∇x(t)x(t) (1)

admits solutions x(t) ∈ g defined for all t ∈ R (see for instance [7] or [9]).
We also recall the definition of complex structures and product structures on a Lie algebra,

which are modelled on the corresponding notions for smooth manifolds.
An almost complex structure on a Lie algebra g is a linear endomorphism J : g −→ g

satisfying J 2
= −1. If J satisfies the condition

J [x, y] = [J x, y] + [x, J y] + J [J x, J y] for all x, y ∈ g, (2)

we will say that J is integrable and we will call it a complex structure on g. Note that the
dimension of a Lie algebra carrying an almost complex structure must be even.

Next, an almost product structure on g is a linear endomorphism E : g −→ g satisfying
E2

= 1 (and not equal to ±1). It is said to be integrable if

E[x, y] = [Ex, y] + [x, Ey] − E[Ex, Ey] for all x, y ∈ g. (3)

An integrable almost product structure will be called a product structure. If g± is the eigenspace
of g associated to the eigenvalue ±1 of E , then the integrability of E is equivalent to the fact of g±

being Lie subalgebras of g. If dim g+ = dim g−, the product structure E is called a paracomplex
structure [14,15]. In this case, g has even dimension.

An appropriate combination of these two structures on Lie algebras is called a complex
product structure, and its definition is given below.

Definition 2 ([4]). A complex product structure on the Lie algebra g is a pair {J, E} of a complex
structure J and a product structure E satisfying J E = −E J .

Complex product structures on Lie algebras have been studied in [4], from where we recall
some of their main properties. The condition J E = −E J implies that J is an isomorphism (as
vector spaces) between g+ and g−, the eigenspaces corresponding to the eigenvalues +1 and
−1 of E , respectively; thus, E is in fact a paracomplex structure on g. Every complex product
structure on g has therefore an associated double Lie algebra (g, g+, g−), i.e., g+ and g− are Lie
subalgebras of g such that g = g+ ⊕ g− (direct sum of vector spaces) and g− = Jg+, where
E |g+

= 1, E |g−
= −1.
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The complex product structure {J, E} on g determines uniquely a torsion-free connection ∇
CP

on g such that ∇
CP J = ∇

CP E = 0, where these equations mean that

∇
CP
x J y = J∇

CP
x y, ∇

CP
x Ey = E∇

CP
x y

for all x, y ∈ g. As a consequence, we note that ∇
CP
x y ∈ g± for any x ∈ g and y ∈ g±. Take now

x ∈ g+, y ∈ g−. Since ∇
CP has no torsion, we obtain that

[x, y] = −∇
CP
y x + ∇

CP
x y ∈ g+ ⊕ g− (4)

is the decomposition of [x, y] into components, according to the splitting g = g+ ⊕ g−.
The connection ∇

CP restricts to flat torsion-free connections on g+ and g−, say ∇
+ and ∇

−,
respectively. Thus, we have that ∇

CP is flat if and only if R(x+, x−) = 0 for all x+ ∈ g+, x− ∈

g−, where R is the curvature of ∇
CP.

3. Hypersymplectic structures on Lie algebras

We study in this section a special kind of metrics on a Lie algebra with a complex product
structure, just as hyperhermitian and hyperkähler metrics appear in the context of hypercomplex
structures.

Let g be a Lie algebra endowed with a complex product structure {J, E} and let g be a metric
on g, i.e., g is a non-degenerate symmetric bilinear form g : g × g −→ R. We will say that g is
compatible with the complex product structure if, for all x, y ∈ g,

g(J x, J y) = g(x, y), g(Ex, Ey) = −g(x, y). (5)

Let (g, g+, g−) denote the double Lie algebra associated to the complex product structure
{J, E}, where g− = Jg+ and let g be a compatible metric. Then it follows easily that the
subalgebras g+ and g− are isotropic subspaces of g with respect to g, i.e., g(g+, g+) =

0, g(g−, g−) = 0. From this it is clear that g⊥
+ = g+ and g⊥

− = g− and also that the signature of
g is (m,m), where dim g = 2m.

Let us now define the following bilinear forms on g:

ω1(x, y) = g(J x, y), ω2(x, y) = g(Ex, y), ω3(x, y) = g(J Ex, y) (6)

for x, y ∈ g. Using (5), it is readily verified that these forms are in fact skew-symmetric, so that
ωi ∈

∧2 g∗ for i = 1, 2, 3. Note that these forms are non-degenerate, since g is non-degenerate
and J and E are isomorphisms. In the following result, whose proof is straightforward, we show
the existing relationships between these 2-forms on g and the decomposition of this Lie algebra
induced by the product structure E .

Lemma 3. The 2-forms ωi , i = 1, 2, 3, on g satisfy the following properties:

(i) ω1(x, y) = ω1(J x, J y) = ω1(Ex, Ey) for all x, y ∈ g, whence ω1(x, y) = 0 for
x ∈ g+, y ∈ g−.

(ii) −ω2(x, y) = ω2(J x, J y) = ω2(Ex, Ey) for all x, y ∈ g, whence ω2(x, y) = 0 for
x, y ∈ g+ or x, y ∈ g−.

(iii) ω3(x, y) = −ω3(J x, J y) = ω3(Ex, Ey) for all x, y ∈ g, whence ω3(x, y) = 0 for
x ∈ g+, y ∈ g−.
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Let ω+ and ω− denote the restriction of ω1 to g+ and g−, respectively. From (i) of the previous
lemma and the fact that ω1 is non-degenerate, it is easy to see that both ω+ and ω− are non-
degenerate. Hence, m = dim g+ = dim g− must be an even number, say m = 2n, and therefore
dim g = 4n and the signature of g is (2n, 2n).

From Lemma 3(i) we obtain that

ω+(x, y) = ω−(J x, J y) (7)

for all x, y ∈ g+. Actually, the 2-forms ω1, ω2 and ω3 can be written in terms exclusively of ω+,
since we have the identities

ω1(x + J x ′, y + J y′) = ω+(x, y)+ ω+(x ′, y′), (8)

ω2(x + J x ′, y + J y′) = −ω+(x, y′)+ ω+(y, x ′), (9)

ω3(x + J x ′, y + J y′) = ω+(x, y)− ω+(x ′, y′) (10)

for all x, y, x ′, y′
∈ g+. Eqs. (8)–(10) follow easily from (6), Lemma 3 and the relations

ω2(u, Jv) = −ω1(u, v) and ω3(u, v) = ω1(u, v) for all u, v ∈ g+.
Let us recall now that given a 2-form ω on a Lie algebra g, there is an associated 3-form

dω ∈
∧3 g∗ given by

(dω)(x, y, z) = −ω([x, y], z)+ ω([x, z], y)− ω([y, z], x)

for all x, y, z ∈ g. The 2-form ω is called closed if dω = 0; if ω is non-degenerate and closed, it
is called a symplectic form on g.

Naturally, we are mainly interested in the case when all of the 2-forms given in (6) are closed
and hence symplectic. We introduce therefore the following definition, equivalent to the one
given by Hitchin in [11].

Definition 4. Let {J, E} be a complex product structure on the Lie algebra g and let g be a metric
on g compatible with {J, E}. If the 2-forms ωi ∈

∧2 g∗ defined in (6) are closed, we will say
that {J, E, g} is a hypersymplectic structure on g. The Lie algebra g will be referred to as a
hypersymplectic Lie algebra and g will be called a hypersymplectic metric.

The surprising fact is that if one of the 2-forms ω1 or ω3 is closed, then all three of these
2-forms are closed, as the following result shows.

Proposition 5. Let {J, E} be a complex product structure on g with associated double Lie
algebra (g, g+, g−). Let ∇

+ and ∇
− denote the flat torsion-free connections on g+ and g−

induced by ∇
CP. Suppose g is a compatible metric on g and let ωi , i = 1, 2, 3, be the 2-forms on

g given by (6) and ω+ and ω− be as above. Then the following statements are equivalent:

(i) ω1 is closed;
(ii) ω3 is closed;

(iii) ∇
+ω+ = 0 and ∇

−ω− = 0.

Furthermore, if one of the conditions above holds, then

(iv) ω2 is closed.

Remark 6. We recall that a 2-form ω on a Lie algebra h is parallel with respect to a connection
∇ on h, i.e. ∇ω = 0, if the condition ω(∇x y, z) = ω(∇x z, y) holds for all x, y, z ∈ h. We will
also say that ∇ and ω are compatible.
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Proof. (i) ⇔ (iii). Let us suppose first that (i) holds. For x, y ∈ g+ and z = Ju with u ∈ g+ we
have that

(dω1)(x, y, Ju) = ω1([x, Ju], y)− ω1([y, Ju], x)

= −ω1(∇
CP
Ju x, y)+ ω1(∇

CP
Ju y, x)

= −ω1(∇
CP
Ju J x, J y)+ ω1(∇

CP
Ju J y, J x)

= −ω−(∇
−

Ju J x, J y)+ ω−(∇
−

Ju J y, J x), (11)

using (4). As dω1 = 0, we obtain that ∇
−ω− = 0. If we consider now x ∈ g+ and

y = Jv, z = Ju with u, v ∈ g+, we have that

(dω1)(x, Jv, Ju) = −ω1([x, Jv], Ju)+ ω1([x, Ju], Jv)

= −ω1(∇
CP
x Jv, Ju)+ ω1(∇

CP
x Ju, Jv)

= −ω1(∇
CP
x v, u)+ ω1(∇

CP
x u, v)

= −ω+(∇
+
x v, u)+ ω+(∇

+
x u, v), (12)

using again (4). As dω1 = 0, we obtain that ∇
+ω+ = 0. Thus, (iii) holds.

Conversely, let us suppose that (iii) holds. We note first that, as ∇
+ and ∇

− are torsion-
free, one obtains that dω+ = 0 and dω− = 0. Suppose first that x, y, z ∈ g+. Then
dω1(x, y, z) = dω+(x, y, z) = 0 since ω+ is closed. Similarly, for x, y, z ∈ g−, we have
dω1(x, y, z) = dω−(x, y, z) = 0 since ω− is closed. Next, if x, y ∈ g+ and z = Ju
with u ∈ g+, from Eq. (11) and ∇

−ω− = 0, we have that (dω1)(x, y, Ju) = 0. Finally, if
x ∈ g+ and y = Jv, z = Ju with u, v ∈ g+, from Eq. (12) and ∇

+ω+ = 0, we have that
(dω1)(x, Jv, Ju) = 0. Therefore, dω1 = 0.
(ii) ⇔ (iii). The proof is similar to the proof of (i) ⇔ (iii).
(iii) ⇒ (iv). If x, y, z ∈ g+ or x, y, z ∈ g−, then (dω2)(x, y, z) = 0, because of Lemma 3(ii).

If x, y ∈ g+ and z = Ju with u ∈ g+, then we have

(dω2)(x, y, Ju) = −ω2([x, y], Ju)+ ω2([x, Ju], y)− ω2([y, Ju], x)

= −ω2([x, y], Ju)+ ω2(∇
CP
x Ju, y)− ω2(∇

CP
y Ju, x)

= ω1([x, y], u)− ω1(∇
CP
x u, y)+ ω1(∇

CP
y u, x)

= ω+([x, y], u)− ω+(∇
+
x u, y)+ ω+(∇

+
y u, x)

= ω+([x, y], u)− ω+(∇
+
x y, u)+ ω+(∇

+
y x, u)

= 0

because of (4), (iii) and since ∇
+ is torsion-free. Now suppose that x ∈ g+ and y = Jv, z = Ju

with u, v ∈ g+. We have that

(dω2)(x, Jv, Ju) = −ω2([x, Jv], Ju)+ ω2([x, Ju], Jv)− ω2([Jv, Ju], x)

= ω2(∇
CP
Jv x, Ju)− ω2(∇

CP
Ju x, Jv)+ ω2(J [Jv, Ju], J x)

= −ω1(∇
CP
Jv x, u)+ ω1(∇

CP
Ju x, v)− ω1(J [Jv, Ju], x)

= −ω1(∇
CP
Jv J x, Ju)+ ω1(∇

CP
Ju J x, Jv)+ ω1([Jv, Ju], J x)

= −ω1(∇
CP
Jv Ju, J x)+ ω1(∇

CP
Ju Jv, J x)+ ω1([Jv, Ju], J x)

= −ω−(∇
−

Jv Ju, J x)+ ω−(∇
−

Ju Jv, J x)+ ω1([Jv, Ju], J x)

= 0
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because of (4), (iii) and since ∇
− is torsion-free. Hence, (iv) holds and the proof of the

proposition is complete. �

At this point we can state a characterization of hypersymplectic Lie algebras in terms of two
Lie algebras equipped with a flat torsion-free connection and a parallel symplectic form.

Theorem 7. Let {J, E, g} be a hypersymplectic structure on g with (g, g+, g−) the double
Lie algebra associated to the complex product structure {J, E}. Then we have two triples
(g+,∇

+, ω+) and (g−,∇
−, ω−) where ∇

± is a flat torsion-free connection and ω± is a parallel
symplectic form on g±. These symplectic forms are related by: ω+(x, y) = ω−(J x, J y) for
x, y ∈ g+.

Conversely, suppose (g+,∇
+, ω+) and (g−,∇

−, ω−) are two triples consisting of a Lie
algebra, a flat torsion-free connection and a parallel symplectic form. If there exists a linear
isomorphism ϕ : g+ → g− such that

(i) the representations ρ : g+ → gl(g−) and µ : g− → gl(g+) defined by

ρ(x)a = ϕ∇xϕ
−1(a), µ(a)x = ϕ−1

∇
′
aϕ(x)

satisfy

ρ(x)[a, b] − [ρ(x)a, b] − [a, ρ(x)b] + ρ(µ(a)x)b − ρ(µ(b)x)a = 0,

µ(a)[x, y] − [µ(a)x, y] − [x, µ(a)y] + µ(ρ(x)a)y − µ(ρ(y)a)x = 0,

for all x, y ∈ g+ and a, b ∈ g−;
(ii) ω(x, y) = ω′(ϕ(x), ϕ(y)) for all x, y ∈ g+;

then the vector space g = g+ ⊕ g− admits a Lie bracket extending the Lie brackets on g+ and
g− and there is a hypersymplectic structure on g such that its associated double Lie algebra is
(g, g+, g−).

Remark 8. Note that {g, E, ω2} is a parakähler Lie algebra (see [13]).

Proof. The first part of the theorem follows from Proposition 5 and the discussion previous to it.
Now we prove the converse. Condition (i) means that (g+, g−, ρ, µ) is a matched pair of Lie

algebras (see [16]). Thus, the bracket on g given by

[(x, a), (y, b)] = ([x, y] + µ(a)y − µ(b)x, [a, b] + ρ(x)b − ρ(y)a),

for x, y ∈ g+ and a, b ∈ g− satisfies the Jacobi identity; g with this Lie algebra structure will be
denoted g = g+ FG

ρ
µ g− (or simply g = g+ FG g−) and will be called the bicrossproduct of g+

and g−. Observe that g+ and g− are Lie subalgebras of g. Taking into account the definition of
ρ and µ, we get that

[(x, 0), (0, a)] = (−ϕ−1
∇

′
aϕ(x), ϕ∇xϕ

−1(a))

for x ∈ g+ and a ∈ g−. It has already been proved in [4] that g = g+ FG g− admits a complex
product structure {J, E}, where the endomorphisms J and E are defined by

J (x, a) = (−ϕ−1(a), ϕ(x)), E |g+
= 1, E |g−

= −1,

for x ∈ g+, a ∈ g−. Furthermore, if ∇
CP denotes the torsion-free connection associated to

{J, E}, then the restrictions of ∇
CP to g+ and g− are precisely the original connections ∇ and

∇
′, respectively.
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We proceed now to define a metric g on g which will be shown to be hypersymplectic. Let g
be given by

g(g+, g+) = 0, g(g−, g−) = 0, g((x, a), (y, b)) = ω(ϕ−1(b), x)+ ω(ϕ−1(a), y)

for x, y ∈ g+, a, b ∈ g−. It is clear that g is a metric on g. We should check now that it satisfies
(5). We begin with

g(J (x, a), J (y, b)) = g((−ϕ−1(a), ϕ(x)), (−ϕ−1(b), ϕ(y)))

= −ω(y, ϕ−1(a))− ω(x, ϕ−1(b))

= ω(ϕ−1(a), y)+ ω(ϕ−1(b), x)

= g((x, a), (y, b))

and now

g(E(x, a), E(y, b)) = g((x,−a), (y,−b))

= −ω(ϕ−1(b), x)− ω(ϕ−1(a), y)

= −g((x, a), (y, b)).

Thus (5) holds and g is compatible with {J, E}.
To see that with this metric we obtain a hypersymplectic structure on g, we only have to see

that (iii) of Proposition 5 holds. Let us determine firstly the 2-form ω1 on g:

ω1((x, a), (y, b)) = g(J (x, a), (y, b))

= g((−ϕ−1(a), ϕ(x)), (y, b))

= ω(ϕ−1(b),−ϕ−1(a))+ ω(x, y)

= ω(x, y)+ ω′(a, b).

Therefore, the restrictions of ω1 to g+ and g− are precisely the original symplectic forms ω
and ω′, respectively. As ∇

+ω+ = ∇ω = 0 and ∇
−ω− = ∇

′ω′
= 0, we have that g is a

hypersymplectic metric on g. �

Any metric g on a Lie algebra g determines by left translations a left invariant metric on G,
where G is the only simply connected Lie group with L(G) = g. It is easy to verify that the
Levi-Civita connection on the manifold G is also left invariant, and hence it is determined by its
values at g ∼= TeG. Therefore, the metric g on g determines a connection ∇

g on g, also called
the Levi-Civita connection associated to g. This Levi-Civita connection is the only connection
on g such that (i) it is torsion-free, and (ii) the endomorphisms ∇

g
x , x ∈ g, are skew-adjoint with

respect to g. Just as in the positive definite case, in the neutral setting one can prove the following
equivalences:

Proposition 9. Let g be a Lie algebra with a complex product structure {J, E} and a compatible
metric g. Let ∇

g denote the Levi-Civita connection on g associated to g and let ωi , i = 1, 2, 3,
be the 2-forms on g given in (6). Then the following statements are equivalent:

(i) The metric g is hypersymplectic, i.e., dωi = 0 for i = 1, 2, 3.
(ii) The endomorphisms J and E are ∇

g-parallel: ∇
g J = ∇

g E = 0.
(iii) The 2-forms ωi , i = 1, 2, 3, are ∇

g-parallel: ∇
gωi = 0 for i = 1, 2, 3.
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Corollary 10. If {J, E, g} is a hypersymplectic structure on the Lie algebra g, then ∇
g

= ∇
CP,

where ∇
g is the Levi-Civita connection associated to g and ∇

CP is the complex product
connection associated to {J, E}.

Proof. Recalling that ∇
CP is the only torsion-free connection with respect to which J and E

are parallel, and taking into account the equivalence (i) ⇔ (ii) of Proposition 9, we obtain that
∇

g
= ∇

CP. �

We consider now the question of equivalences between hypersymplectic structures. We have
the following definition.

Definition 11. Let {J, E, g} and {J ′, E ′, g′
} be hypersymplectic structures on the Lie algebras

g and g′ respectively. These structures are said to be equivalent if there exists a Lie algebra
isomorphism ξ : g −→ g′ such that

ξ J = J ′ξ, ξE = E ′ξ and g′(ξ x, ξ y) = g(x, y) (13)

for all x, y ∈ g.

Remark 12. The first two conditions in (13) mean that the underlying complex product
structures {J, E} and {J ′, E ′

} are equivalent. The third condition means that ξ is an isometry
between g and g′.

Lemma 13. With notation as in the previous definition, let ∇
g and ∇

g′

be the Levi-Civita
connection of g and g′ respectively. Then ξ gives an equivalence between these two connections.
Furthermore, if ωi , i = 1, 2, 3, are given as in (6) and ω′

i , i = 1, 2, 3, are defined similarly for
g′, then ωi (x, y) = ω′

i (ξ x, ξ y) for all x, y ∈ g.

Proof. According to Corollary 10, the Levi-Civita connection ∇
g of g is the only torsion-free

connection on g such that ∇
g J = ∇

g E = 0, and a similar statement holds for ∇
g′

. We would
like to show that ξ∇g

x y = ∇
g′

ξ xξ y for all x, y ∈ g. To see this, define a connection ∇̃ on g by

∇̃x y := ξ−1
∇

g′

ξ xξ y, x, y ∈ g.

Let us see that it is torsion-free:

∇̃x y − ∇̃y x = ξ−1(∇
g′

ξ xξ y − ∇
g′

ξ yξ x) = ξ−1
[ξ x, ξ y] = [x, y]

for any x, y ∈ g. Let us verify now that J is ∇̃-parallel.

∇̃x J y = ξ−1
∇

g′

ξ xξ J y = ξ−1
∇

g′

ξ x J ′ξ y = ξ−1 J ′
∇

g′

ξ xξ y = Jξ−1
∇

g′

ξ xξ y = J ∇̃x y

for all x, y ∈ g. In the same way, it can be seen that ∇̃E = 0. By uniqueness, we have that
∇

g
= ∇̃ and hence ∇

g and ∇
g′

are equivalent.
Let us check now the assertions about the symplectic forms. Let us consider first the 2-form

ω1. We have

ω1(x, y) = g(J x, y) = g′(ξ J x, ξ y) = g′(J ′ξ x, ξ y) = ω′

1(ξ x, ξ y)

for all x, y ∈ g. In a similar fashion one can prove the corresponding statements for ω2 and
ω3. �

Motivated by the previous result, we introduce the following definition.
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Definition 14. Let g be a Lie algebra equipped with a connection ∇ and a symplectic formω such
that ∇ω = 0, and similarly for a Lie algebra g′ with ∇

′ and ω′. We will say that (g,∇, ω) and
(g′,∇ ′, ω′) are symplectically equivalent if there exists a Lie algebra isomorphism ξ : g → g′

such that

ξ∇x y = ∇
′
ξ xξ y, ω(x, y) = ω′(ξ x, ξ y) for all x, y ∈ g.

Proposition 15. Keep the notation from Theorem 7. Suppose that (g+,∇, ω) is symplectically
equivalent to (g+,∇, ω), where ∇ is a flat torsion-free connection on g+ and ω is a symplectic
form on g+ such that ∇ω = 0. Similarly, let (g−,∇

′, ω′) be symplectically equivalent
to (g−,∇

′
, ω′). Then we obtain a matched pair of Lie algebras (g+, g−, ρ, µ) and the

bicrossproduct g = g+ FG
ρ
µ g− has a hypersymplectic structure equivalent to the one on

g = g+ FG
ρ
µ g−.

Remark 16. See the proof of Theorem 7 for the definition of a matched pair of Lie algebras.

Proof. Let ξ : g+ → g+ and ξ ′
: g− → g− be the Lie algebra isomorphisms which give

the symplectic equivalences between (g+,∇, ω) and (g+,∇, ω) and between (g−,∇
′, ω′) and

(g−,∇
′
, ω′), respectively. Consider now the linear isomorphism ψ : g+ → g− given by

ψ = ξ ′ϕξ−1. Associated to the isomorphism ψ we have the representations ρ : g+ → gl(g−)

and µ : g− → gl(g+) defined by

ρ(x)a = ψ∇xψ
−1(a), µ(a)x = ψ−1

∇
′

aψ(x).

It is easily verified that (g+, g−, ρ, µ) is a matched pair of Lie algebras, using that
(g+, g−, ρ, µ) is another matched pair of Lie algebras. We may form now the bicrossproduct
Lie algebras g = g+ FG

ρ
µ g− and g = g+ FG

ρ
µ g−. Furthermore, it is easy to see that ω(x, y) =

ω′(ψ(x), ψ(y)) for all x, y ∈ g+. From Theorem 7, both g and g have a hypersymplectic
structure. Consider now the linear isomorphism η := ξ ⊕ ξ ′

: g −→ g; it is straightforward
to verify that η defines an equivalence between the hypersymplectic structures on g and g. �

3.1. At the Lie group level

Let {J, E, g} be a hypersymplectic structure on the Lie algebra g, and let G be the simply
connected Lie group with Lie algebra g, where we consider an element of g as a left invariant
vector field on G. The hypersymplectic structure on g determines, by left translations, a
hypersymplectic structure on G, still denoted by {J, E, g}. This means that J is a complex
structure, E is a product structure and g is a pseudo-Riemannian metric on G, compatible with
J and E , such that ∇

g J = ∇
g E = 0. Equivalently, the 2-forms ωi ∈ Ω2(G), i = 1, 2, 3,

defined as in (6), are symplectic (parallel) forms. The metric g is automatically Ricci flat and its
holonomy is contained in Sp(n,R), where dim G = 4n. If (g, g+, g−) is the associated double
Lie algebra, with g− = Jg+, let G+ and G− denote the connected Lie subgroups of G with Lie
algebras g+ and g−, respectively. The decomposition g = g+ FG g− determines naturally two
complementary distributions on G, both of them involutive, and the leaves of the foliations F+

and F− determined by these distributions are totally real submanifolds of the complex manifold
(G, J ). Moreover, these leaves are totally geodesic and flat with respect to the canonical torsion-
free connection ∇

CP determined by {J, E} (which coincides with the Levi-Civita connection
of the hypersymplectic metric g). The foliations F± are symplectic with respect to any of the
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symplectic forms ω1 and ω3, whereas they are lagrangian with respect to the remaining form ω2.
It is easy to see that the leaf of F± passing through x ∈ G is xG±, and it is well known that this
leaf is embedded if and only if G± is closed in G. If the Lie group G admits a lattice Γ , then the
hypersymplectic structure on G induces one on the compact manifold Γ \ G.

4. Symplectic flat torsion-free connections on R2 and aff(R)

In the next sections, we will determine all the 4-dimensional Lie algebras which carry a
hypersymplectic structure. In order to do so, we will need to know all the flat torsion-free
connections that preserve a symplectic form on the 2-dimensional Lie algebras. We recall that, up
to isomorphism, there are only two 2-dimensional Lie algebras, namely, R2 and the Lie algebra
aff(R), which has a basis {e1, e2} such that [e1, e2] = e2. aff(R) is the Lie algebra of the Lie
group Aff (R) of affine motions of the real line.

We start with the abelian Lie algebra R2.

Theorem 17. Let R2
= span{e1, e2} denote the 2-dimensional abelian Lie algebra and let

ω = e1
∧ e2 be the canonical symplectic form on R2. Then the only non-zero flat torsion-free

connections ∇ on R2 such that ∇ω = 0 are the following:

(a) For α 6= 0:

∇e1 =

(
0 0
α 0

)
, ∇e2 = 0;

(b) For α 6= 0:

∇e1 = 0, ∇e2 =

(
0 α

0 0

)
;

(c) For α 6= 0, β 6= 0:

∇e1 =

α −
α2

β
β −α

 , ∇e2 =

−
α2

β

α3

β2

−α
α2

β

 .
Proof. Let us denote

∇e1e1 = ae1 + be2,

∇e1 e2 = ce1 + de2 = ∇e2e1,

∇e2e2 = ge1 + he2,

with a, b, c, d, g, h ∈ R. Since ∇ is flat, we have that ∇e1∇e2 = ∇e2∇e1 , and from this condition
we obtain that

bg = cd,

bc − bh + d2
− ad = 0,

ag − dg + ch − c2
= 0.

(14)

Now, the condition ∇ω = 0 holds if and only if ω(∇x y, z) = ω(∇x z, y) for all x, y, z ∈ R2.
From this we get

d = −a and h = −c.
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Substituting into (14), we obtain

bg = −ac,

a2
= −bc,

c2
= ag.

(15)

If a = 0, then c = 0 and bg = 0. As ∇ 6= 0, then b 6= 0 or g 6= 0. If b 6= 0, then g = 0 and ∇

is of type (a) in the statement. If g 6= 0, then b = 0 and ∇ is of type (b) in the statement.

Let us suppose now a 6= 0. Then bcg 6= 0 and from (15) we obtain c = −
a2

b and g =
a3

b2 .
Therefore, ∇ is of type (c) in the statement. �

In the next proposition we study the equivalences among the connections obtained in
Theorem 17.

Proposition 18. Let ∇ be a non-zero flat torsion-free connection on R2 and ω a ∇-parallel
symplectic form on R2. Then (R2,∇, ω) is symplectically equivalent to (R2,∇0, e1

∧ e2), where
{e1, e2} is a suitable basis of R2, {e1, e2

} is the dual basis and ∇
0 is given by

∇
0
e1

=

(
0 0
1 0

)
, ∇

0
e2

= 0;

This flat torsion-free connection on R2 is complete.

Proof. There exists a basis {e1, e2} of R2 such that ω = e1
∧ e2. Since ∇ω = 0, the connection

∇ must be one of those given by Theorem 17.
Let us suppose first that ∇ is of type (a) in Theorem 17. The linear isomorphism of R2 which

gives the symplectic equivalence between ∇ and ∇
0 is given by

ξ =

(
α1/3 0

0 α−1/3

)
in the ordered basis {e1, e2}.

Suppose now that the connection ∇ is of type (b) in Theorem 17. The linear isomorphism of
R2 which gives the symplectic equivalence between ∇ and ∇

0 is given by

ξ =

(
0 −α1/3

α−1/3 0

)
in the ordered basis {e1, e2}.

Finally, if ∇ is of type (c) in Theorem 17, we may take the following isomorphism of R2:

ξ =

(
β1/3

−αβ−2/3

0 β−1/3

)
.

The verification of all these statements is simple. We would like now to check that the connection
∇

0 is complete. In order to do so, we will use (1). Let x(t) = a1(t)e1 + a2(t)e2 be a curve on g
which satisfies ẋ(t) = −∇

0
x(t)x(t). Thus, we obtain the system of differential equations{

ȧ1 = 0,
ȧ2 = −a2

1 .

The solutions of this system are clearly defined for every t ∈ R and therefore ∇
0 is complete. �
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Remark 19. In [18], a classification of flat torsion-free connections (up to equivalence) on the
abelian Lie algebra R2 is given. The flat torsion-free connection ∇

0 from Proposition 18 belongs
to the class A4 of that classification.

Next, we move on to consider the other 2-dimensional Lie algebra, aff(R).

Theorem 20. Let aff(R) = span{e1, e2} denote the 2-dimensional Lie algebra with Lie bracket
[e1, e2] = e2 and let ω = e1

∧ e2 be the canonical symplectic form on aff(R). Then the only flat
torsion-free connections ∇ on aff(R) such that ∇ω = 0 are the following:

(a) For α ∈ R:

∇e1 =

(
−1 0
α 1

)
, ∇e2 = 0;

(b) For α ∈ R:

∇e1 =

−
1
2

0

α
1
2

 , ∇e2 =

(
0 0

−
1
2

0

)
.

Proof. Let us denote

∇e1e1 = ae1 + be2,

∇e1 e2 = ce1 + de2,

∇e2e2 = ge1 + he2,

with a, b, c, d, g, h ∈ R. Since ∇ is torsion-free, we have

∇e2e1 = ce1 + (d − 1)e2.

The condition ∇ω = 0 implies that d = −a and h = −c. Taking this into account and using that
∇ is flat, we obtain the following equations

c(a + 2)+ bg = 0,

g(2a − 1)− 2c2
= 0,

2bc + (a + 1)(2a + 1) = 0.

(16)

From the third equation in (16) we get

2a2
+ 3a + (2bc + 1) = 0. (17)

Also, from (16) we see immediately that a 6=
1
2 . Hence g =

2c2

2a−1 and substituting into the first
equation we have

c

(
(a + 2)+

2bc

2a − 1

)
= 0.

If c 6= 0, then (a + 2)(2a − 1)+ 2bc = 0 and hence 2a2
+ 3a + 2bc − 2 = 0, which combined

with (17) yields a contradiction. Thus, c = 0 and the system (16) becomes

bg = 0,

g(2a − 1) = 0,

(a + 1)(2a + 1) = 0.

(18)
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Therefore, g = 0 (since a 6=
1
2 ), b ∈ R is arbitrary and a = −1 or a = −

1
2 . In the first case, we

obtain a connection of type (a) and in the second case we obtain a connection of type (b). The
proof is complete. �

In the next proposition we deal with the equivalences of the connections obtained in
Theorem 20.

Proposition 21. Let ∇ be a flat torsion-free connection on aff(R) and ω a ∇-parallel symplectic
form on aff(R). Then (aff(R),∇, ω) is symplectically equivalent to either (aff(R),∇1, e1

∧ e2)

or (aff(R),∇2, e1
∧ e2), where {e1, e2} is a suitable basis of aff(R), {e1, e2

} is the dual basis
and ∇

1,∇2 are given by:

∇
1
e1

=

(
−1 0
0 1

)
, ∇

1
e2

= 0;

and

∇
2
e1

=

−
1
2

0

0
1
2

 , ∇
2
e2

=

(
0 0

−
1
2

0

)
.

None of the connections ∇
1 and ∇

2 on aff(R) is complete.

Proof. Let {ẽ1, ẽ2} be a basis of aff(R) such that [ẽ1, ẽ2] = ẽ2. There exists λ 6= 0 such that
ω = λ(ẽ1

∧ ẽ2). Set e1 := ẽ1, e2 := λẽ2. We have then [e1, e2] = e2 and

ω = λ(ẽ1
∧ ẽ2) = λ(e1

∧ λ−1e2) = e1
∧ e2.

So, we have ∇(e1
∧ e2) = 0, and then ∇ must be one of the flat torsion-free connections given

in Theorem 20.
Let us suppose first that ∇ is of type (a) in Theorem 20. The linear isomorphism of aff(R)

which gives the symplectic equivalence between ∇ and ∇
1 is given by

ξ =

(
1 0

1
2
α 1

)
in the ordered basis {e1, e2}.

If we take now a connection ∇ of type (b) in Theorem 20, the linear isomorphism of aff(R)
giving the symplectic equivalence between ∇ and ∇

2 is

ξ =

(
1 0

2α 1

)
in the ordered basis {e1, e2}.

Next, we observe that ∇
1 and ∇

2 are not equivalent. If they were, the subspaces W1 = {x ∈

aff(R) : ∇
1
x ≡ 0} and W2 = {x ∈ aff(R) : ∇

2
x ≡ 0} of aff(R) should be isomorphic. However, it

is clear that dim W1 = 1 while W2 = {0}. Thus, these two connections are not equivalent.
Finally, we show that these connections are not complete. Suppose x(t) = a1(t)e1 + a2(t)e2

is a curve on aff(R) that satisfies ẋ(t) = −∇
1
x(t)x(t). Thus, we obtain the system of differential

equations{
ȧ1 = a2

1,

ȧ2 = −a1a2.
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From the first equation in the system we obtain that a1(t) cannot be defined in the whole real
line; thus ∇

1 is not complete. Analogously, if x(t) = a1(t)e1 + a2(t)e2 is a curve on aff(R) that
satisfies ẋ(t) = −∇

2
x(t)x(t), we have the system{

ȧ1 =
1
2

a2
1,

ȧ2 = 0.

We obtain again that a1(t) cannot be defined in the whole real line; thus ∇
2 is not complete. �

5. Hypersymplectic 4-dimensional Lie algebras

In this section we will determine all 4-dimensional hypersymplectic Lie algebras, by
employing Theorem 7. We will also be able to obtain a parameterization of the hypersymplectic
structures, up to equivalence.

We fix first some notation on 4-dimensional Lie algebras and Lie groups which will be needed
in what follows.

(i) Let gh
0 be defined by gh

0 = span{v0, v1, v2, v3} with [v1, v2] = v3. This Lie algebra is
a central extension of the 3-dimensional Heisenberg algebra and it is the only 2-step nilpotent
4-dimensional Lie algebra.

Let Gh
0 denote the simply connected Lie group corresponding to gh

0 . It is well known that
Gh

0 is diffeomorphic to R4 via the exponential map and, by standard computations, we can find
global coordinates t, x, y, z on Gh

0 such that the left invariant 1-forms {v0, v1, v2, v3
} dual to the

left invariant vector fields {vi }0≤i≤3 are given by

v0
= dt, v1

= dx, v2
= dy, v3

= −xdy + dz.

(ii) Let gh
1 be defined by gh

1 = span{v0, v1, v2, v3} with [v0, v1] = v1, [v0, v2] = −v2 and
[v0, v3] = −v3. This Lie algebra is an extension of R3 and it lies in the class r4,−1,−1 of the
classification of 4-dimensional solvable Lie algebras given in [2]. It is 2-step solvable and not
unimodular.

Let Gh
1 denote the simply connected Lie group corresponding to gh

1 . It is well known that Gh
1

is diffeomorphic to R4 and, by standard computations, we can find global coordinates t, x, y, z
on Gh

1 such that the left invariant 1-forms {v0, v1, v2, v3
} dual to the left invariant vector fields

{vi }0≤i≤3 are given by

v0
= dt, v1

= e−t dx, v2
= et dy, v3

= et dz.

(iii) Let gh
2 be defined by gh

2 = span{v0, v1, v2, v3} with [v0, v1] = 2v1, [v0, v2] =

−v2, [v0, v3] = v3 and [v1, v2] = v3. This Lie algebra is an extension of h3 and it lies in
the class d4,2 of the classification of 4-dimensional solvable Lie algebras given in [2]. It is 3-step
solvable and not unimodular.

Let Gh
2 denote the simply connected Lie group corresponding to gh

2 . It is well known that Gh
2

is diffeomorphic to R4 and, by standard computations, we can find global coordinates t, x, y, z
on Gh

2 such that the left-invariants 1-forms {v0, v1, v2, v3
} dual to the left invariant vector fields

{vi }0≤i≤3 are given by

v0
= dt, v1

= e−2t dx, v2
= et dy, v3

= e−t
(

dz −
1
2

xdy +
1
2

ydx

)
.
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We shall show next that given a complex product structure on a 4-dimensional Lie algebra,
there is only one compatible metric, up to a non-zero constant. A proof of this lemma can also
be found in [6].

Lemma 22. Let {J, E} be a complex product structure on a 4-dimensional Lie algebra. If g and
h are two metrics on g compatible with {J, E}, then there exists λ ∈ R \ {0} such that h = λg.

Proof. Let (g, g+, g−), with g− = Jg+, be the double Lie algebra associated to {J, E}. Take a
basis {e1, e2} of g+ and the corresponding basis { f1 := Je1, f2 := Je2} of g−. Since the metric
g is compatible with {J, E}, we know that g(ei , e j ) = 0, g( fi , f j ) = 0 and g(ei , fi ) = 0, for
1 ≤ i, j ≤ 2. Also, g(e1, f2) = −g(e2, f1) = α for some α 6= 0, since g is non-degenerate.
Hence, g = α〈·, ·〉, where 〈·, ·〉 is the metric on g compatible with {J, E} whose only non-zero
values are 〈e1, f2〉 = 1, 〈e2, f1〉 = −1. Similarly, h = β〈·, ·〉 for some β 6= 0, and the result
follows. �

We will also need the following (2 × 2) matrices, for θ ∈ R:

E =

(
1 0
0 −1

)
, J =

(
0 −1
1 0

)
Aθ =

(
cos θ sin θ
sin θ − cos θ

)
,

Bθ =

(
− sin θ 1 + cos θ

1 + cos θ sin θ

)
, Cθ =

(
sin θ(1 + cos θ) − cos θ(1 + cos θ)
cos θ(1 + cos θ) sin θ(1 + cos θ)

)
.

Now we can state the theorem of classification of 4-dimensional hypersymplectic Lie
algebras.

Theorem 23. Let g be a 4-dimensional Lie algebra carrying a hypersymplectic structure.
Then g is isomorphic to either R4, gh

0, g
h
1 or gh

2 . Furthermore, the parameterization of the
hypersymplectic structures in each case is given by:
(i) If g ∼= R4, the underlying complex product structure is equivalent to {J, E}, where

J =

(
0 −1
1 0

)
, E =

(
1 0
0 −1

)
(with 1 the (2 × 2)-identity matrix) in some ordered basis of R4. The left invariant
hypersymplectic metric on the abelian Lie group R4 is

g = dt2
+ dx2

− dy2
− dz2,

which is flat and complete.
(ii) If g ∼= gh

0 , then the underlying complex product structure on g is equivalent to one and

only one of {J (0), E (0)θ }, where J (0)v1 = v2, J (0)v3 = v0 and

E (0)θ =

(
E 0
0 Aθ

)
for θ ∈ [0, 2π), in the ordered basis {v1, v2, v3, v0}. The corresponding left invariant
hypersymplectic metrics on Gh

0 are

g(0)θ = − cosθ/2 xdy2
+ cosθ/2 xdydz + sinθ/2 dtdy

− sinθ/2 xdxdy + sinθ/2 dxdz − cosθ/2 dtdx .

The metrics are flat and complete for all θ , and hence isometric to the canonical neutral metric
on R4 given in (i).
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(iii) If g ∼= gh
1 , then the underlying complex product structure on g is equivalent to one and

only one of {J (1), E (1)θ,d} or {J (1), E (1)1 }, where J (1)v0 = v1, J (1)v2 = v3 and

E (1)θ,d =

(
Aθ 0

dBθ E

)
, E (1)1 =

(
−E 0
−2E E

)
for θ ∈ [0, 2π) and d = 0 or d = 1, in the ordered basis {v0, v1, v2, v3}. The corresponding left
invariant hypersymplectic metrics on Gh

1 are

g(1)θ,0 = cosθ/2 et dtdz + sinθ/2 dxdz + sinθ/2 et dtdy − cosθ/2 dxdy,

g(1)θ,1 = cosθ/2 et dtdz + sinθ/2 dxdz + cosθ/2 e2t dz2

+ sinθ/2 et dtdy − cosθ/2 dxdy + cosθ/2 e2t dy2.

and

g(1)1 = dxdz + e2t dz2
+ et dtdy + e2t dy2.

These metrics are all non-complete; g(1)θ,0 and g(1)1 are flat, while g(1)θ,1 is flat if and only if θ = π .

(iv) If g ∼= gh
2 , then the underlying complex product structure on g is equivalent to one and

only one of {J (2), E (2)θ,d} or {J (2), E (2)1 }, where J (2)v2 = v0, J (2)v1 = v3 and

E (2)θ,d =

(
Aθ 0

dCθ A(−θ)

)
, E (2)1 =

(
−E 0
−2J −E

)
for θ ∈ [0, 2π) and d = 0 or d = 1, in the ordered basis {v0, v2, v1, v3}. The corresponding left
invariant hypersymplectic metrics on Gh

2 are

g(2)θ,0 = e−t dt

(
dz −

1
2

xdy +
1
2

ydx

)
+ e−t dxdy,

g(2)θ,1 = cosθ/2 et dtdz + sinθ/2 dxdz + cosθ/2 e2t dz2

+ sinθ/2 et dtdy − cosθ/2 dxdy + cosθ/2 e2t dy2,

and

g(2)1 = e−t dxdy + e−4t dx2
+ e−t dt

(
dz −

1
2

xdy +
1
2

ydx

)
+ e−2t

(
dz −

1
2

xdy +
1
2

ydx

)2

.

These metrics are all non-complete; g(2)θ,0 and g(2)1 are flat, while g(2)θ,1 is flat if and only if θ = π .

We end this section with some remarks; the proof of this theorem will be postponed to
Section 6.

Remark 24. Note that E (1)π,0 = E (1)π,1 and E (2)π,0 = E (2)π,1.

Remark 25. (i) Complex structures on 4-dimensional solvable Lie algebras were classified in
[17] and [19]. The Lie algebra gh

0 lies in the class S1 of [19], the algebra gh
1 lies in the class

A2 (λ = −1) of [17] and finally, gh
2 is in the class H5 (λ1 = 2, λ2 = −1) of [17]. The first

two Lie algebras carry only one complex structure, up to equivalence, and they coincide with
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the complex structures J (0) and J (1) in Theorem 23, respectively. In contrast, gh
2 carries two

non-equivalent complex structures: one of them coincides with the complex structure J (2) from
Theorem 23, while the other one cannot be part of any hypersymplectic structure on gh

2 .
(ii) A classification of 4-dimensional Lie algebras admitting a complex product structure was

given by Blazić and Vukmirović in [6], where they refer to complex product structures as para-
hypercomplex structures. The hypersymplectic Lie algebras obtained earlier can be found within
this classification.

(iii) The Lie group Gh
0 is isomorphic to H3 × R, where H3 is the 3-dimensional Heisenberg

group. It is well known that this Lie group admits discrete subgroups Γ such that MΓ = (H3 ×

R)/Γ is a compact manifold; any hypersymplectic structure on gh
0 induces a hypersymplectic

structure on MΓ , all of them flat. This manifold is a primary Kodaira surface, and it has already
been shown in [12] that it carries hypersymplectic structures. On the other hand, the Lie groups
Gh

1 and Gh
2 do not admit discrete cocompact subgroups, since they are not unimodular.

6. Proof of Theorem 23

We will construct explicitly all 4-dimensional Lie algebras carrying a hypersymplectic
structure using Theorem 7. In order to do so, we have to determine all the triples
(g+,∇, ω), (g−,∇

′, ω′) and the linear isomorphisms ϕ : g+ −→ g− which satisfy the conditions
of this theorem. The Lie algebras g+ and g− are 2-dimensional, and therefore they are isomorphic
either to R2 or aff(R). The flat torsion-free connections on these Lie algebras which are
compatible with the canonical symplectic forms were determined in Section 4. We only have
to establish the linear isomorphisms ϕ which are admissible. We will do this in several steps.

6.1. Case (A): g+ = R2 and g− = R2

We fix a basis {e1, e2} of g+ and its associated symplectic form ω = e1
∧ e2, where

{e1, e2
} is the dual basis. In the same way we fix a basis { f1, f2} of g− and its associated

symplectic form ω′
= f 1

∧ f 2, where { f 1, f 2
} is the dual basis. In this case there are only

two connections to be considered: the connection identically zero and the connection ∇
0 which

appears in Proposition 18.

(A1) ∇ = 0 and ∇
′
= 0.

Here g = g+ FG g− = R4 is the abelian 4-dimensional Lie algebra and the hypersymplectic
is the canonical one, given as in the statement of the theorem.

(A2) ∇ = ∇
0 and ∇

′
= 0.

Here g = R2 n R2. In this special case we may simply suppose that the linear isomorphism
ϕ : aff(R) −→ R2 we are seeking is given by ϕ(ei ) = fi , i = 1, 2. It is easy to see that
this isomorphism is compatible with ∇ and ∇

′ and also with ω and ω′. Hence, we obtain a
hypersymplectic structure on g. Let us identify this Lie algebra. If we denote ei := (ei , 0) and
fi := (0, fi ) for i = 1, 2, then the only non-zero bracket is [e1, f1] = f2. We also have Jei = fi
and Eei = ei , E fi = − fi . By setting

v1 := e1, v2 := f1, v3 := f2, v0 := −e2,

we obtain [v1, v2] = v3 and v3 central; therefore g ∼= gh
0 . The complex structure J is given by

Jv1 = v2, Jv3 = v0 and the eigenspaces corresponding to E are g+ = span{v0, v1}, g− =

span{v2, v3}. This complex product structure is equivalent to {J (0), E (0)π }.
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The hypersymplectic metric on gh
0 in this case is homothetic to gπ given by gπ (v0, v2) =

gπ (v1, v3) = 1. Hence, gπ = v0
· v2

+ v1
· v3. The left-invariant metric gπ on Gh

0 is given in
terms of the global coordinates by

gπ = dtdy − xdxdy + dxdz.

It is easily seen that the associated torsion-free connection ∇
CP

= ∇
gπ is flat and the metric gπ

is complete, using Eq. (1).

(A3) ∇ = 0 and ∇
′
= ∇

0.
Here g = R2 nR2. We may suppose again that the linear isomorphism ϕ : aff(R) −→ R2 we

are seeking is given by ϕ(ei ) = fi , i = 1, 2. It is easy to see that this isomorphism is compatible
with ∇ and ∇

′ and also with ω and ω′. Hence, we obtain a hypersymplectic structure on g. Let us
identify this Lie algebra. If we denote ei := (ei , 0) and fi := (0, fi ) for i = 1, 2, then the only
non-zero bracket is [e1, f1] = e2. We have that Jei = fi and Eei = ei , E fi = − fi . By setting

v1 := e1, v2 := f1, v3 := e2, v0 := f2,

we get [v1, v2] = v3 and v3 central; therefore g ∼= gh
0 . The complex structure J is given by

Jv1 = v2, Jv3 = v0 and the eigenspaces corresponding to E are g+ = span{v1, v3} and
g− = span{v0, v2}. This complex product structure is equivalent to {J (0), E (0)0 }.

The hypersymplectic metric on gh
0 in this case is homothetic to g0 given by g0(v0, v1) =

1, g0(v2, v3) = −1. Hence, g0 = v0
· v1

− v2
· v3. The left-invariant metric g0 on Gh

0 is given in
terms of the global coordinates by

g0 = dtdx + xdy2
− dydz.

It is easy to check that the torsion-free connection ∇
CP associated with this hypersymplectic

structure is flat and that the metric g0 is complete, using Eq. (1).

(A4) ∇ = ∇
0 and ∇

′
= ∇

0.
We are looking for a linear isomorphism ϕ : g+ −→ g− compatible with ∇ and ∇

′ and also

with ω and ω′. After lengthy computations, we obtain that ϕ must be of the form ϕ =

(
a 0
b d

)
,

with ad = 1 (in the ordered bases {e1, e2}, { f1, f2}). Hence, we have a hypersymplectic structure
on the bicrossproduct Lie algebra g := R2

FG R2. Let us denote ei := (ei , 0), fi := (0, fi ) for
i = 1, 2; the only non-zero bracket is [e1, f1] = −a2e2 + d2 f2. The complex product structure
on this Lie algebra is given by

Je1 = a f1 + b f2, Je2 = d f2, J f1 = −de1 + be2, J f2 = −ae2

and Eei = ei , E fi = − fi for i = 1, 2. We will make now a change of basis, setting:

v1 := e1, v2 := a f1 + b f2, v3 := a(−a2e2 + d2 f2), v0 := −a(de2 + a f2).

Then we have [v1, v2] = v3 and hence g ∼= gh
0 . The complex structure J is given by

Jv1 = v2, Jv3 = v0 and the eigenspaces corresponding to E are

g+ = span
{
v1,

a3

a6 + 1
v3 +

1

a6 + 1
v0

}
, g− = span

{
v2,

1

a6 + 1
v3 −

a3

a6 + 1
v0

}
.

This complex product structure is equivalent to {J (0), E (0)θ }, where θ is given by cos(θ/2) =

a3
√

a6+1
, sin(θ/2) =

1√
a6+1

. Note that θ 6= 0 and θ 6= π . The eigenspaces associated to
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E (0)θ are g+ = span{Uθ , v2}, g− = span{Vθ , v3}, where Uθ = cosθ/2 v0 + sinθ/2 v1 and
Vθ = − sinθ/2 v0 + cosθ/2 v1; note that JUθ = Vθ and Jv2 = v3.

The hypersymplectic metric on gh
0 in this case is homothetic to gθ given by gθ (Uθ , v2) =

1, g0(Vθ , v1) = −1. Hence,

gθ = (cosθ/2 v3
+ sinθ/2 v0) · v2

− v1
· (− sinθ/2 v3

+ cosθ/2 v0)

and the left-invariant metric g0 on Gh
0 is given in terms of the global coordinates by

gθ = − cosθ/2 xdy2
+ cosθ/2 xdydz + sinθ/2 dtdy

− sinθ/2 xdxdy + sinθ/2 dxdz − cosθ/2 dtdx .

It is easy to check that the torsion-free connection ∇
CP associated with this hypersymplectic

structure is flat and that the metric gθ is complete, using Eq. (1).

6.2. Case (B): g+ = aff(R) and g− = R2

We fix a basis {e1, e2} of g+ such that [e1, e2] = e2 and its associated symplectic form
ω = e1

∧ e2, where {e1, e2
} is the dual basis. In the same way we fix a basis { f1, f2} of g−

and its associated symplectic form ω′
= f 1

∧ f 2, where { f 1, f 2
} is the dual basis.

(B1) ∇ = ∇
1 and ∇

′
= 0.

In this case, we have g := aff(R)n R2. If we denote ei := (ei , 0), fi := (0, fi ) for i = 1, 2,
then the only non-zero brackets are

[e1, e2] = e2, [e1, f1] = − f1, [e1, f2] = f2.

The complex product structure on this Lie algebra is given by Jei = fi and Eei = ei , E fi = − fi
for i = 1, 2. We will make a change of basis, setting v0 = −e1, v1 = − f1, v2 = e2, v3 = f2.
Thus,

[v0, v1] = v1, [v0, v2] = −v2, [v0, v3] = −v3, Jv0 = v1, Jv2 = v3,

and hence g ∼= gh
1 . The eigenspaces corresponding to E are the subalgebras g+ =

span{v0, v2}, g− = span{v1, v3}; this complex product structure is equivalent to {J (1), E (1)0,0}.

The hypersymplectic metric on gh
1 in this case is homothetic to g0,0 given by g0,0(v0, v3) =

1, g0,0(v1, v2) = −1; hence, g0,0 = v0
·v3

−v1
·v2. The left-invariant metric g0,0 on Gh

1 is given
in terms of the global coordinates by

g0,0 = et dtdz − dxdy.

It is easy to check that the torsion-free connection ∇
CP associated with this hypersymplectic

structure is flat. However, the metric g0,0 cannot be complete. Indeed, if it were complete, then its
restrictions to the eigenspaces of E (1)0,0 should be complete. But at least one of these eigenspaces
is isomorphic to aff(R), and we know from Proposition 21 that any flat torsion-free connection
on aff(R) compatible with a symplectic form is not complete, a contradiction.

(B2) ∇ = ∇
1 and ∇

′
= ∇

0.
Any linear isomorphism ϕ : aff(R) −→ R2 compatible with ∇ and ∇

′ and also with ω and ω′

must be of the form ϕ =

(
a 0
b d

)
, with ad = 1 (in the ordered bases {e1, e2}, { f1, f2}). With such
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a ϕ we have a hypersymplectic structure on the bicrossproduct Lie algebra g := g+ FG g− =

aff(R) FG R2. Let us denote ei := (ei , 0), fi := (0, fi ) for i = 1, 2; the only non-zero brackets
are

[e1, e2] = e2, [e1, f1] = −a2e2 − f1 − 2bd f2, [e1, f2] = f2.

The complex product structure on this Lie algebra is given by

Je1 = a f1 + b f2, Je2 = d f2, J f1 = −de1 + be2, J f2 = −ae2

and Eei = ei , E fi = − fi for i = 1, 2. If we set v0 := −e1 +
a2

2 f2, v1 := −
a3

2 e2 − a f1 −

b f2, v2 := e2, v3 := d f2 we obtain

[v0, v1] = v1, [v0, v2] = −v2, [v0, v3] = −v3, Jv0 = v1, Jv2 = v3,

and thus g ∼= gh
1 . The eigenspaces corresponding to E , in this new basis, are given by

g+ = span
{
v0 −

a3

2
v3, v2

}
, g− = span

{
v1 +

a3

2
v2, v3

}
.

This complex product structure is equivalent to {J (1), E (1)0,1}, for all a 6= 0. The eigenspaces

associated to E (1)0,1 are

g+ = span{v0 + v3, v2}, g− = span{v1 − v2, v3}.

The hypersymplectic metric on gh
1 in this case is homothetic to g0,1 given by g0,1(v0 + v3, v3) =

1, g0,1(v1 − v2, v2) = −1; hence, g0,1 = (v0
+ v3) · v3

− (v1
− v2) · v2. The left-invariant metric

g0,1 on Gh
1 is given in terms of the global coordinates by

g0,1 = et dtdz + e2t dz2
− dxdy + e2t dy2.

The connection ∇
CP

= ∇
g0,1 on gh

1 can be easily computed and we can deduce from this
computation that its curvature tensor R satisfies

R(v0 + v3, v1 − v2)(v0 + v3) = 6v2, R(v0 + v3, v1 − v2)(v1 − v2) = 6v3,

and is zero for all the other possibilities. Hence, g0,1 is not flat but, as in the case (B1), this metric
is not complete.

(B3) ∇ = ∇
2 and ∇

′
= 0.

In this case, we have g := aff(R)n R2. If we denote ei := (ei , 0), fi := (0, fi ) for i = 1, 2,
then the only non-zero brackets are

[e1, e2] = e2, [e1, f1] = −
1
2

f1, [e1, f2] =
1
2

f2, [e2, f1] = −
1
2

f2.

The complex product structure on this Lie algebra is given by Jei = fi and Eei = ei , E fi = − fi
for i = 1, 2. We will make a change of basis, setting v0 := 2e1, v1 := e2, v2 := −2 f1, v3 := f2.
Thus,

[v0, v1] = 2v1, [v0, v2] = −v2, [v0, v3] = v3, [v1, v2] = v3,

Jv0 = −v2, Jv1 = v3,

and thus g ∼= gh
2 . The eigenspaces corresponding to E , in this new basis, are given by

g+ = span{v0, v1}, g− = span{v2, v3}, and this complex product structure is equivalent to
{J (2), E (2)0,0}.
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The hypersymplectic metric on gh
2 in this case is homothetic to g0,0 given by g0,0(v0, v3) =

g0,0(v1, v2) = 1; hence, g0,0 = v0
· v3

+ v1
· v2. The left-invariant metric g0,0 on Gh

2 is given in
terms of the global coordinates by

g0,0 = e−t dt

(
dz −

1
2

xdy +
1
2

ydx

)
+ e−t dxdy.

It can be shown that this metric is flat and non-complete.

(B4) ∇ = ∇
2 and ∇

′
= ∇

0.
Any linear isomorphism ϕ : aff(R) −→ R2 compatible with ∇ and ∇

′ and also with ω and ω′

must be of the form ϕ =

(
a 0
b d

)
, with ad = 1 (in the ordered bases {e1, e2}, { f1, f2}). Hence, we

have a hypersymplectic structure on the bicrossproduct Lie algebra g := g+ FG g− = aff(R) FG

R2. Let us denote ei := (ei , 0), fi := (0, fi ) for i = 1, 2; the only non-zero brackets are

[e1, e2] = e2, [e1, f1] = −a2e2 −
1
2

f1 − bd f2, [e1, f2] =
1
2

f2, [e2, f1] = −
1
2

d2 f2.

The complex product structure on this Lie algebra is given by

Je1 = a f1 + b f2, Je2 = d f2, J f1 = −de1 + be2, J f2 = −ae2

and Eei = ei , E fi = − fi for i = 1, 2. We will make now a change of basis, setting

v0 := 2e1 −
4
3 a2 f2, v1 := e2, v2 := −

(
4
3 a3e2 + 2a f1 + 2b f2

)
, v3 := d f2. Thus,

[v0, v1] = 2v1, [v0, v2] = −v2, [v0, v3] = v3, [v1, v2] = v3,

Jv0 = −v2, Jv1 = v3,

and thus g ∼= gh
2 . The eigenspaces corresponding to E , in this new basis, are given by

g+ = span
{
v0 +

4
3

a3v3, v1

}
, g− = span

{
v2 +

4
3

a3v1, v3

}
.

This complex product structure is equivalent to {J (2), E (2)0,1}, for all a 6= 0, and the eigenspaces

associated to E (2)0,1 are

g+ = span{v0 + v3, v1}, g− = span{v1 + v2, v3}.

The hypersymplectic metric on gh
2 in this case is homothetic to g0,1 given by g0,1(v0 + v3, v3) =

g0,1(v1 + v2, v1) = 1; hence, g0,1 = (v0
+ v3) · v3

+ (v1
+ v2) · v1. The left-invariant metric

g0,1 on Gh
1 is given in terms of the global coordinates by

g0,1 = e−t dt

(
dz −

1
2

xdy +
1
2

ydx

)
+ e−t dxdy + e−4t dx2

+ e−2t
(

dz −
1
2

xdy +
1
2

ydx

)2

.

The connection ∇
CP

= ∇
g0,1 on gh

2 can be easily computed and we can deduce from this
computation that its curvature tensor R satisfies

R(v0 + v3, v1 + v2)(v0 + v3) = −6v1, R(v0 + v3, v1 + v2)(v1 + v2) = 6v3,
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and is zero for all the other possibilities. Hence, g0,1 is not flat but, as in the case (B1), this metric
is not complete.

6.3. Case (B′): g+ = R2 and g− = aff(R)

We fix a basis {e1, e2} of g+ and its associated symplectic form ω = e1
∧ e2, where {e1, e2

}

is the dual basis. In the same way we fix a basis { f1, f2} of g− such that [ f1, f2] = f2 and its
associated symplectic form ω′

= f 1
∧ f 2, where { f 1, f 2

} is the dual basis.

(B1′)∇ = 0 and ∇
′
= ∇

1.
In this case, we have g := aff(R)n R2. If we denote ei := (ei , 0), fi := (0, fi ) for i = 1, 2,

then the only non-zero brackets are

[e1, f1] = e1, [e2, f1] = −e2, [ f1, f2] = f2.

The complex product structure on this Lie algebra is given by Jei = fi and Eei = ei , E fi = − fi
for i = 1, 2. By setting v0 = − f1, v1 = e1, v2 = e2, v3 = f2, we get

[v0, v1] = v1, [v0, v2] = −v2, [v0, v3] = −v3,

Jv0 = v1, Jv2 = v3,

and thus g ∼= gh
1 . The eigenspaces corresponding to E are the subalgebras g+ =

span{v1, v2}, g− = span{v0, v3}, and this complex product structure is equivalent to
{J (1), E (1)π,0 = E (1)π,1}.

The hypersymplectic metric on gh
1 in this case is homothetic to gπ,0 given by gπ,0(v1, v3) =

gπ,0(v0, v2) = 1; hence, gπ,0 = v1
· v3

+ v0
· v2. The left-invariant metric gπ,0 on Gh

1 is given in
terms of the global coordinates by

gπ,0 = et dtdy + dxdz.

It is easy to check that the torsion-free connection ∇
CP associated with this hypersymplectic

structure is flat. However, the metric gπ,0 is not complete.

(B2′)∇ = ∇
0 and ∇

′
= ∇

1.
The linear isomorphisms ϕ : aff(R) −→ R2 compatible with ∇ and ∇

′ and also with ω and ω′

must be of the form ϕ =

(
a 0
b d

)
, with ad = 1 (in the ordered bases {e1, e2}, { f1, f2}). For such

a ϕ there is a hypersymplectic structure on the bicrossproduct Lie algebra g := R2
FG aff(R).

Let us denote ei := (ei , 0), fi := (0, fi ) for i = 1, 2; the only non-zero brackets are

[e1, f1] = e1 − 2abe2 + d2 f2, [e2, f1] = −e2, [ f1, f2] = f2.

The complex product structure on this Lie algebra is given by

Je1 = a f1 + b f2, Je2 = d f2, J f1 = −de1 + be2, J f2 = −ae2

and Eei = ei , E fi = − fi for i = 1, 2. We will make now a change of basis, setting
v0 :=

d2

2 e2 − f1, v1 := de1 − be2 +
d3

2 f2, v2 := e2, v3 := d f2. Thus,

[v0, v1] = v1, [v0, v2] = −v2, [v0, v3] = −v3, Jv0 = v1, Jv2 = v3,

and thus g ∼= gh
1 . The eigenspaces corresponding to E , in this new basis, are

g+ = span
{
v1 −

d2

2
v3, v2

}
, g− = span

{
−v0 +

d2

2
v2, v3

}
.
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This complex product structure is equivalent to {J (1), E (1)1 }, for all d 6= 0, and the eigenspaces

associated to E (1)1 are g+ = span{v1 + v3, v2}, g− = span{v0 + v2, v3}.
Every hypersymplectic metric on gh

1 corresponding to this complex product structure is
homothetic to g1 = (v1

+ v3) · v3
+ (v0

+ v2) · v2, which gives rise to a left-invariant metric on
Gh

1 , given by

g1 = dxdz + e2t dz2
+ et dtdy + e2t dy2.

It can be shown that the metric g1 is flat and not complete.

(B3′)∇ = 0 and ∇
′
= ∇

2.
In this case, we have g := aff(R)n R2. If we denote ei := (ei , 0), fi := (0, fi ) for i = 1, 2,

then the only non-zero brackets are

[e1, f1] =
1
2

e1, [e1, f2] =
1
2

e2, [e2, f1] = −
1
2

e2, [ f1, f2] = f2.

The complex product structure on this Lie algebra is given by Jei = fi and Eei = ei , E fi = − fi
for i = 1, 2. We will make a change of basis, setting v0 := 2 f1, v1 := f2, v2 := 2e1, v3 := −e2.
Thus,

[v0, v1] = 2v1, [v0, v2] = −v2, [v0, v3] = v3, [v1, v2] = v3,

Jv0 = −v2, Jv1 = v3,

and hence g ∼= gh
2 . The eigenspaces corresponding to E , in this new basis, are the subalgebras

g+ = span{v2, v3}, g− = span{v0, v1}. This complex product structure is equivalent to
{J (2), E (2)π,0 = E (2)π,1}.

The hypersymplectic metric on gh
2 in this case is homothetic to gπ,0 given by gπ,0(v1, v2) =

gπ,0(v0, v3) = 1; hence, gπ,0 = v1
· v2

+ v0
· v3. The left-invariant metric gπ,0 on Gh

1 is given in
terms of the global coordinates by

gπ,0 = e−t dt

(
dz −

1
2

xdy +
1
2

ydx

)
+ e−t dxdy.

It is easy to show that this metric is flat and non-complete.

(B4′)∇ = ∇
0 and ∇

′
= ∇

2.
Again, any linear isomorphism ϕ : aff(R) −→ R2 compatible with ∇ and ∇

′ and also

with ω and ω′ must be of the form ϕ =

(
a 0
b d

)
, with ad = 1 (in the ordered bases

{e1, e2}, { f1, f2}). For such a ϕ there is a hypersymplectic structure on the bicrossproduct Lie
algebra g := R2

FG aff(R). Let us denote ei := (ei , 0), fi := (0, fi ) for i = 1, 2; the only
non-zero brackets are

[e1, f1] =
1
2

e1 − abe2 + d2 f2, [e1, f2] =
1
2

a2e2, [e2, f1] = −
1
2

e2, [ f1, f2] = f2.

The complex product structure on this Lie algebra is given by

Je1 = a f1 + b f2, Je2 = d f2, J f1 = −de1 + be2, J f2 = −ae2

and Eei = ei , E fi = − fi for i = 1, 2. We will make now a change of basis, setting
v0 := −

4
3 d2e2 + 2 f1, v1 := f2, v2 := 2de1 − 2be2 +

4
3 d3 f2, v3 := −ae2. Thus,

[v0, v1] = 2v1, [v0, v2] = −v2, [v0, v3] = v3, [v1, v2] = v3,

Jv0 = −v2, Jv1 = v3,
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so that g ∼= gh
2 . The eigenspaces corresponding to E , in this new basis, are given by

g+ = span
{
−v2 +

4
3

d3v1, v3

}
, g− = span

{
v0 −

4
3

d3v3, v1

}
.

This complex product structure is equivalent to {J (2), E (2)1 }, for all d 6= 0; the eigenspaces

associated to E (2)1 are g+ = span{v1 + v2, v3}, g− = span{v0 + v3, v1}.

Every hypersymplectic metric on gh
2 corresponding to this complex product structure is

homothetic to g1 = (v1
+ v2) · v1

+ (v0
+ v3) · v3, which gives rise to a left-invariant metric on

Gh
2 , given by

g1 = e−t dxdy + e−4t dx2
+ e−t dt

(
dz −

1
2

xdy +
1
2

ydx

)
+ e−2t

(
dz −

1
2

xdy +
1
2

ydx

)2

.

This metric is flat and not complete.

6.4. Case (C): g+ = aff(R) and g− = aff(R)

We will use g+ = span{e1, e2} with [e1, e2] = e2 and g− = span{ f1, f2} with [ f1, f2] = f2;
the symplectic forms are ω = e1

∧ e2 and ω′
= f 1

∧ f 2. Clearly, none of the connections on g+

or g− may be zero, since in that case the Lie algebra would turn out to be abelian.

(C1) ∇ = ∇
1 and ∇

′
= ∇

1.
Any linear isomorphism ϕ : g+ −→ g− compatible with ∇ and ∇

′ and also with ω and ω′.

must be of the form ϕ =

(
a 0
b d

)
, with ad = 1 (in the ordered bases {e1, e2}, { f1, f2}). For such

a ϕ we obtain a hypersymplectic structure on the bicrossproduct Lie algebra g := g+ FG g− =

aff(R) FG aff(R). Let us denote ei := (ei , 0), fi := (0, fi ) for i = 1, 2; the only non-zero
brackets are

[e1, e2] = e2, [e1, f1] = e1 − 2abe2 − f1 − 2bd f2, [e1, f2] = f2,

[e2, f1] = −e2, [ f1, f2] = f2.

The complex product structure on this Lie algebra is given by

Je1 = a f1 + b f2, Je2 = d f2, J f1 = −de1 + be2, J f2 = −ae2

and Eei = ei , E fi = − fi for i = 1, 2. We will make a change of basis, setting

v0 := −
1

a2 + 1
(e1 + a2 f1), v1 :=

1

a2 + 1
(a(e1 − f1)− a2be2 − b f2),

v2 := ae2, v3 := f2.

Thus, we have that

[v0, v1] = v1, [v0, v2] = −v2, [v0, v3] = −v3,

Jv0 = v1, Jv2 = v3,



2064 A. Andrada / Journal of Geometry and Physics 56 (2006) 2039–2067

so that g ∼= gh
1 . The eigenspaces corresponding to E , in this new basis, are given by

g+ = span
{
v0 − av1 −

ab

a2 + 1
v3, v2

}
, g− = span

{
v0 + dv1 +

b

a2 + 1
v2, v3

}
.

This complex product structure is equivalent to either {J (1), E (1)θ,0} if b = 0 or {J (1), E (1)θ,1} if

b 6= 0, in both cases with cos θ =
1−a2

1+a2 , sin θ = −
2a

1+a2 . Note that θ 6= 0 and θ 6= π (since
a 6= 0).

On the one hand, the eigenspaces associated to E (1)θ,0 are the subalgebras g+ =

span{Uθ , v2}, g− = span{Vθ , v3}, where Uθ = cosθ/2 v0 + sinθ/2 v1 and Vθ = − sinθ/2 v0 +

cosθ/2 v1; note that JUθ = Vθ and Jv2 = v3. Every hypersymplectic metric on gh
1 corresponding

to this complex product structure is homothetic to gθ,0(Uθ , v3) = 1, gθ,0(Vθ , v2) = −1; hence

gθ,0 = (cosθ/2 v0
+ sinθ/2 v1) · v3

− (− sinθ/2 v0
+ cosθ/2 v1) · v2.

From this we obtain that the left-invariant metric gθ,0 on Gh
1 is given in terms of the global

coordinates by

gθ,0 = cosθ/2 et dtdz + sinθ/2 dxdz + sinθ/2 et dtdy − cosθ/2 dxdy.

The connection ∇
CP

= ∇
gθ,0 on gh

1 can be explicitly computed, and we can deduce from this
computation that it is flat. Moreover, this connection is not complete.

On the other hand, the eigenspaces associated to E (1)θ,1 are the subalgebras g+ =

span{Uθ , v2}, g− = span{Vθ , v3}, where Uθ = cosθ/2 v0 + sinθ/2 v1 + cosθ/2 v3 and Vθ =

− sinθ/2 v0 + cosθ/2 v1 − cosθ/2 v2; note that JUθ = Vθ and Jv2 = v3. Every hypersymplectic
metric on gh

1 corresponding to this complex product structure is homothetic to gθ,1(Uθ , v3) =

1, gθ,0(Vθ , v2) = −1; hence

gθ,1 = (cosθ/2 v0
+ sinθ/2 v1

+ cosθ/2 v3) · v3

− (− sinθ/2 v0
+ cosθ/2 v1

− cosθ/2 v2) · v2.

The left-invariant metric gθ,1 on Gh
1 is given in terms of the global coordinates by

gθ,1 = cosθ/2 et dtdz + sinθ/2 dxdz + cosθ/2 e2t dz2

+ sinθ/2 et dtdy − cosθ/2 dxdy + cosθ/2 e2t dy2.

The connection ∇
CP

= ∇
gθ,1 on gh

1 can be explicitly computed, and we can deduce from this
computation that

R(Uθ , Vθ )Uθ = 6 cos(θ/2)v2, R(Uθ , Vθ )Vθ = 6 cos(θ/2)v3,

and is zero for the other possibilities. Therefore, gθ,1 is not flat in this case (since θ 6= π ). As in
previous cases, the metrics gθ,1 are not complete.

(C2) ∇ = ∇
1 and ∇

′
= ∇

2 or ∇ = ∇
2 and ∇

′
= ∇

1.
In these cases there does not exist any ϕ : g+ −→ g− compatible with ∇ and ∇

′.

(C3) ∇ = ∇
2 and ∇

′
= ∇

2.
Any linear isomorphism ϕ : g+ −→ g− compatible with ∇ and ∇

′ and also with ω and ω′.

must be of the form ϕ =

(
a 0
b d

)
, with ad = 1 (in the ordered bases {e1, e2}, { f1, f2}). For this

ϕ there is a hypersymplectic structure on the bicrossproduct Lie algebra g := aff(R) FG aff(R).
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Let us denote ei := (ei , 0), fi := (0, fi ) for i = 1, 2; the only non-zero brackets are

[e1, e2] = e2, [e1, f1] =
1
2

e1 − abe2 −
1
2

f1 − bd f2, [e1, f2] =
1
2
(a2e2 + f2),

[e2, f1] = −
1
2
(e2 + d2 f2), [ f1, f2] = f2.

The complex product structure on this Lie algebra is given by

Je1 = a f1 + b f2, Je2 = d f2, J f1 = −de1 + be2, J f2 = −ae2

and Eei = ei , E fi = − fi for i = 1, 2. We will make a change of basis, setting

v0 :=
2

a2 + 1

(
e1 −

2a3b

3(a2 + 1)
e2 + a2 f1 +

2ab

3(a2 + 1)
f2

)
,

v2 :=
2

a2 + 1

(
a(e1 − f1)−

a2b(3a2
+ 1)

3(a2 + 1)
e2 −

b(a2
+ 3)

3(a2 + 1)
f2

)
,

v1 := e2 + f2, v3 := −ae2 + d f2.

Thus, we have that

[v0, v1] = 2v1, [v0, v2] = −v2, [v0, v3] = v3, [v1, v2] = v3,

Jv0 = −v2, Jv1 = v3,

so that g ∼= gh
2 . The eigenspaces corresponding to E , in this new basis, are given by

g+ = span
{
v0 + av2 +

2a2b

3(a2 + 1)
v3, v1 − av3

}
,

g− = span
{
v0 − dv2 −

2ab

3(a2 + 1)
v1, av1 + v3

}
.

This complex product structure is equivalent to either {J (2), E (2)θ,0} if b = 0 or {J (2), E (2)θ,1} if

b 6= 0, in both cases with cos θ =
1−a2

1+a2 , sin θ = −
2a

1+a2 . Note that θ 6= 0 and θ 6= π (since
a 6= 0).

On the one hand, the eigenspaces associated to E (2)θ,0 are the subalgebras g+ =

span{Uθ , Ũθ }, g− = span{Vθ , Ṽθ }, where Uθ = cosθ/2 v0 + sinθ/2 v2, Ũθ = cosθ/2 v1 − sinθ/2 v3

and Vθ = sinθ/2 v0 − cosθ/2 v2, Ṽθ = sinθ/2 v1 + cosθ/2 v3. Note that JUθ = Vθ and
JŨθ = Ṽθ . Every hypersymplectic metric on gh

2 corresponding to this complex product structure
is homothetic to gθ,0(Uθ , Ṽθ ) = 1, gθ,0(Ũθ , Vθ ) = −1; so that

gθ,0 = (cosθ/2 v0
+ sinθ/2 v2) · (sinθ/2 v1

+ cosθ/2 v3)

− (cosθ/2 v1
− sinθ/2 v3) · (sinθ/2 v0

− cosθ/2 v2).

Hence, the left-invariant metric gθ,0 on Gh
2 is given in terms of the global coordinates by

gθ,0 = e−t dt

(
dz −

1
2

xdy +
1
2

ydx

)
+ e−t dxdy.

Note that gθ,0 does not depend on θ . It can be shown that this metric is flat and not complete.
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On the other hand, the eigenspaces associated to E (2)θ,1 are the subalgebras g+ =

span{Uθ , Ũθ }, g− = span{Vθ , Ṽθ }, where Uθ = cosθ/2 v0 + sinθ/2 v2 + cosθ/2 v3, Ũθ =

cosθ/2 v1 − sinθ/2 v3 and Vθ = sinθ/2 v0 − cosθ/2 v2 − cosθ/2 v1, Ṽθ = sinθ/2 v1 + cosθ/2 v3.
Note that JUθ = Vθ and JŨθ = Ṽθ . Every hypersymplectic metric on gh

2 corresponding to this
complex product structure is homothetic to gθ,0(Uθ , Ṽθ ) = 1, gθ,0(Ũθ , Vθ ) = −1; so that

gθ,1 = (cosθ/2 v0
+ sinθ/2 v2

+ cosθ/2 v3) · (sinθ/2 v1
+ cosθ/2 v3)

− (sinθ/2 v0
− cosθ/2 v2

− cosθ/2 v1) · (cosθ/2 v1
− sinθ/2 v3).

The left-invariant metric gθ,1 on Gh
2 is given in terms of the global coordinates by

gθ,1 = cosθ/2 et dtdz + sinθ/2 dxdz + cosθ/2 e2t dz2

+ sinθ/2 et dtdy − cosθ/2 dxdy + cosθ/2 e2t dy2.

The connection ∇
CP

= ∇
gθ,1 on gh

2 can be explicitly computed, and we can deduce from this
computation that

R(Uθ , Vθ )Uθ = 6 cos2(θ/2)Ũθ , R(Uθ , Vθ )Vθ = 6 cos2(θ/2)Ṽθ ,

and is zero for the other possibilities. Therefore, gθ,1 is not flat in this case (since θ 6= π ). As in
previous cases, the metrics gθ,1 are not complete.

This concludes the proof of the Theorem 23.
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